

EUFAR 2020: The measurement of air temperature in atmospheric research:

Air temperature characterization in Wake Turbulence & Contrail flow: NRC flight research 2019/2020

A. P. Brown, NRC Canada

12th Nov 2020. virtual presentation to the EUFAR Workshop

ACKNOWLEDGEMENTS:

- Federal Aviation Administration of the United States of America
- Environment & Climate Change Canada, Integrated Transportation Policy, Clean Transportation
- Transport Canada, International Aviation Office
- Aero-Product Development & Certification Program, NRC Canada
- NRC Flight Research Lab & Gas Turbine Lab project team

Outline:

- Statement of the need for advanced air temperature sensing, by examples of flight research data of wake turbulence & contrail flows
- NRC flight research in the UTLS:
- Experimental details, results, discussion for:
 - Wake turbulence
 - Heavy & Super Jet Transport wake generators
 - NRC T33 measurement research jet
 - Case studies:
 - A388 wake-flows, 5-30 Nm
 - NRC Falcon 20 wake flow, \frac{1}{4}-5 Nm

Contrails

- Biofuel (43-100%) generator/emitters, NASA
 DC-8, Air Canada A320's, NRC Falcon 20
 [100% CH, ACCESS II, CAAFER, CAAFCEB
 92% SPK], Mach Number 0.72-0.82
- measurement NRC CT-133 (sensor data: FSSP-100, CN7610, LiCor840, Picarro), Mach Number 0.56-0.62

Experimental details:

- Measurement aircraft, NRC T33:
 - Wing-glove, chordal surface pressures (600/1200 Hz)
 - Highly responsive inertial @ 600 Hz fine spatial resolution;
 - Likewise, Ps, Pt, flow cosine sensing designed for accurate 600 Hz, enabling fine resolution of intricate vortex flowfields

 $(\underline{WV} = \underline{V_A} - \underline{V_G})$, but

- Air temperature sensing is an axially displaced Rosemount TAT (over-damped, comparatively slow response, but A-D sampled at 600 Hz)

- Flight methodology wake turbulence
 - ATC-intercept of Heavy & Super size jets
 - In-trail against NRC Falcon 20
 - Manoeuvres
 - Lateral traverses through port & stbd vortex cores
 - Vertical traverses through a single vortex core
- Flight methodology contrails
 - NRC Falcon climb in-trail (many wake vortex core crossings) & cruise (contrails), undertake lateral & vertical traverses, concatenate to form holistic cross-sectional contours of contrail parameters

- Analysis methodology wake turbulence
 - Lateral traverses => vortex spacing & comparable port & stbd states (rarely symmetric)
 - any vortex core penetration
 - From core entry & exit (defined as maximum tangential velocity) estimate vortex core centre, radius, vorticity distribution & relate velocities, Ts, Ps, axial & radial flows to the derived centre.
 - Although wake vortices might look homogenous, depending, they are generally discontinuous (thin condensate delineates a structure, not fully understood nor modelled)

Experimental details:

- Air temperature sensing from TAT to Ts in WV
- TAT (note the generally warm WV flowfield)

1.097 1.0975 1.098 1.0985 1.099 1.0995 1.1 1.1005 1.101 1.1015

- Ps, Pt identify vortex encounter, confirmed by α,β probes

(vortex

confirmation)

1.097 1.0975 1.098 1.0985 1.099 1.0995

each vortex-pair crossing

239 238

Experimental details:

- Air temperature sensing -Ts profile

 T_S highlights 'warm' nature of the A388 WV flowfield (on this

occasion, not always)

Superimposed with warm & cool vortex induced T_S perturbations

FA20 ATc, K, wake length 6-14 Nm)

- A further derived Ts profile example
- T33 behind the NRC Falcon (uncal.airdata)
 - Falcon corrected by fitted biases, trends thereafter match
- Again T_S highlights 'warm' nature of the Falcon wake (close-in, ¹/₄-2 Nm)
- Comparison with ECCC met balloon data (12 hourly), diurnal effect evident

WV analysis & discussion:

- Vortex profiles, normalized:-
 - Variety of rounded (B-H) to highly peaked vortex profiles, with the latter of greatly reduced spatial scale, spatiotemporally varying in the axial direction, with core radii also varying
 - Highly peaked were vented vortices, with Ps relaxed to ambient on the core C.L., i.e. annular vorticity, discretized circumferentially
 - With radial flow instability $(d^2(r^2\Omega)^2/dr^2 < 0)$ where $\Omega(r)=V(r)/r$.)

flightpath crossplane projected distance (m)

WV analysis (cont.):

- Vortices, A388, 16 Nm (prev.page, asymmetry & annularity evident):-
 - Port vortex

- Ps expansion with velocity (ω association), both vented
- Strong Ts correlation with axial flow is suggested (over-page)

WV Ts analysis:

For all vortex profiles of this A380 s from 5-20 Nm:

- Axial flow ~ Ts

 If specific perturbation energy is considered, (Cp+Cv)ΔT+ΔPs/ρ+½V_v²/1000 kJ/kg

- & if x sign(axial-flow), then downstream & upstream flow division is evident

WV Ts analysis:

- Radial structure of thermal & axial perturbations (normalized r/r_c):
- suggests cooling is within vortex cores, as is downstream axial flow
- Whilst heating is outside adjacent to core edges
 - Similar non-vented & vented cores, but more intensive w_A for vented cores, except downstream flow was radially displaced towards the core edge for the latter

- Analysis methodology contrails
 - Generally eight lateral & vertical traverses, are concatenated to form holistic cross-sectional contours of contrail parameters
 - Ice particle #/cc, RHice, Ts

Civil Aviation Alternate Fuel Contrail Optical Measurements Research (CAAFCOMR)

- Aircraft
- Generator/emitter, NRC Falcon 20 [100% CH, ACCESS II, CAAFER, CAAFCEB 92% SPK], Mach Number 0.72-0.82
- measurement NRC CT-133 (sensor data: FSSP-100, CN7610, LiCor840, Picarro), Mach Number 0.56-0.62
- Racetrack flight patterns trail, 0.5-25 km
- Short, 20th Aug 19 (sublimating), M0.72
- Long, 28th Aug 19 (M0.72), 12th Feb 20 (M0.82) (persistent)

- Fuels
- 100% ATJ SPK & Jet A1

FA20 Contrail analyses:

- X-sections:
- Ice #/cc, T_s,
 RH_{ICE}, RH_W,
- RH_{ICE} & ice #/cc have an interplay (contrail is a continuous formation/growth/ sublimation process across the X-section)
- however, the depleting correlation with warm T_s is evident, even though max ΔT_s was just 1 K in this instance

FA20 Contrail analyses:

- X-sections:
- Ice #/cc, T_S,
 RH_{ICE}, RH_W,
 further
 downstream
- Thicker contrail (higher background RH)

FA20 wake vortex filaments (≈25b back):

Figure 6: NRC Falcon 20 trailing vortex flowfields, at ≈25b_{FA} wake length:vortex pair lateral traverse, giving estimated core radii 0.25 to 0.3 m, and less intense axial flow – nevertheless, upstream and centred upon core edges...

FA20 wake vortex filaments (≈25b back) cont.:

• Using multiple sensors for confirmation

CONCLUSIONS:

Air temperature effects in wake vortex & contrail behaviour:

- Is complex, subtle, important;
- WV modal capture by modelling & full contrail characteristics unlikely to be captured without fine definition of air temperature perturbation distributions & spatiotemporal trajectories:
 - But T_S is derived from TAT with strong P_S, P_T dependency, need directs measurement (*at* a very high rate, at least 600 Hz) for quasi-independent assessment ('quasi' relating to the residual magnitude of convective heat transfer).