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Outline:

- Statement of the need for advanced air 

temperature sensing, by examples of flight 

research data of wake turbulence & contrail 

flows

- NRC flight research in the UTLS:

- Experimental details, results, discussion for:

- Wake turbulence
- Heavy & Super Jet Transport wake generators

- NRC T33 measurement research jet

- Case studies:

- A388 wake-flows, 5-30 Nm

- NRC Falcon 20 wake flow, ¼-5 Nm

- Contrails
- Biofuel (43-100%) generator/emitters, NASA 

DC-8, Air Canada A320’s,  NRC Falcon 20 

[100% CH, ACCESS II, CAAFER, CAAFCEB 

92% SPK ], Mach Number 0.72-0.82

- measurement NRC CT-133 (sensor data: FSSP-

100, CN7610, LiCor840, Picarro), Mach 

Number 0.56-0.62

Air temperature in Jet transport wake & contrail flows
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Experimental details:
- Measurement aircraft, 

NRC T33:
- Wing-glove, chordal

surface pressures 

(600/1200 Hz)

- Highly responsive inertial 

@ 600 Hz – fine spatial 

resolution;

- Likewise, Ps, Pt, flow 

cosine sensing designed for 

accurate 600 Hz, enabling 

fine resolution of intricate 

vortex flowfields

(WV = VA - VG), but

- Air temperature 

sensing is an axially 

displaced Rosemount 

TAT (over-damped, 

comparatively slow 

response, but A-D 

sampled at 600 Hz)

Air temperature in Jet transport wake & contrail flows
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Experimental details:
- Flight methodology – wake 

turbulence
- ATC-intercept of Heavy & 

Super size jets

- In-trail against NRC Falcon 

20

- Manoeuvres

- Lateral traverses 

through port & stbd

vortex cores

- Vertical traverses 

through a single vortex 

core

- Flight methodology - contrails
- NRC Falcon – climb in-trail 

(many wake vortex core 

crossings) & cruise (contrails), 

undertake lateral & vertical 

traverses, concatenate to form 

holistic cross-sectional 

contours of contrail parameters

Air temperature in Jet transport wake & contrail flows



430 440 450 460 470 480 490 500 510

-10

-5

0

5

10

flightpath crossplane projected distance (m)

w
Z
  

  
w

C
  

  
w

A
  

  
w

C
Z
  

 
P

S

 

 

w
Z

w
C

w
A

w
CZ

P
S

5

Experimental details:
- Analysis methodology –

wake turbulence
- Lateral traverses => vortex 

spacing & comparable port & 

stbd states (rarely symmetric)

- any vortex core penetration

- From core entry & exit 

(defined as maximum 

tangential velocity) 

estimate vortex core 

centre, radius, vorticity

distribution & relate 

velocities, Ts, Ps, axial & 

radial flows to the derived 

centre.

- Although wake vortices 

might look homogenous, 

depending, they are 

generally discontinuous 

(thin condensate delineates 

a structure, not fully 

understood nor modelled)

A380, 8 Nm

Air temperature in Jet transport wake & contrail flows
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Experimental details:
- Air temperature sensing – from TAT to Ts in WV
- TAT (note the generally warm WV flowfield)

- Ps, Pt identify vortex encounter, confirmed by , probes

- Local derived M => Ts, with augmented frequency content
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Experimental details:
- Air temperature sensing –Ts profile
- TS highlights ‘warm’ nature of the  A388 WV flowfield (on this 

occasion, not always)

- Superimposed with warm & cool vortex induced TS

perturbations

Air temperature in Jet transport wake & contrail flows

y (m)

z
 (

m
)

FA20 T
S
, K, wake length 6-14 Nm)

 

 

-60 -40 -20 0 20 40 60 80

-30

-20

-10

0

10

20

30

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5



8

220 222 224 226 228 230

26.5

27

27.5

28

28.5

29

29.5

30

30.5

Air temperature T
S
    (K)

P
S
 (

k
P

a
)

T33 derived T
S
 including Falcon wake traverses, 12 Feb 20

 

 

T33 16Z

MW 12Z

MW 00Z

Falcon,uncal,biases fitted,+6.5K,-2.5hPa

Experimental details:
- A further derived Ts profile 

example
- T33 behind the NRC Falcon 

(uncal.airdata)

- Falcon corrected by fitted 

biases, trends thereafter match

- Again TS highlights ‘warm’ nature 

of the  Falcon wake (close-in, ¼-2 

Nm)

- Comparison with ECCC met 

balloon data (12 hourly), diurnal 

effect evident

Air temperature in Jet transport wake & contrail flows
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WV analysis & discussion:
- Vortex profiles, normalized:-

- Variety of rounded (B-H) to 

highly peaked vortex profiles, 

with the latter of greatly reduced 

spatial scale, spatiotemporally 

varying in the axial direction, 

with core radii also varying

- Highly peaked were vented 

vortices, with Ps relaxed to 

ambient on the core C.L., i.e. 

annular vorticity, discretized 

circumferentially

- With radial flow instability (

where                    ) 

• Suggests the existence of strong 

axial flows for continuity
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WV analysis (cont.):
- Vortices, A388, 16 Nm (prev.page, asymmetry & annularity evident):-

- Port vortex

- Starboard vortex

• Ps expansion with velocity ( association), both vented

• Strong Ts correlation with axial flow is suggested (over-page)
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WV Ts analysis:
- For all vortex profiles of this A380 survey 

from 5-20 Nm:

- Axial flow ~ Ts

- If specific perturbation energy is 

considered,

- & if x sign(axial-flow), then downstream 

& upstream flow division is evident
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WV Ts analysis:
- Radial structure of thermal 

& axial perturbations 

(normalized r/rc):

- - suggests cooling is within 

vortex cores, as is 

downstream axial flow

- Whilst heating is outside 

adjacent to core edges

- Similar non-vented & 

vented cores, but more 

intensive wA for 

vented cores, except 

downstream flow was 

radially displaced 

towards the core edge 

for the latter
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Experimental details:
- Analysis methodology - contrails

- Generally eight lateral & vertical traverses, 

are concatenated to form holistic cross-

sectional contours of contrail parameters

- Ice particle #/cc, RHice, Ts

Air temperature in Jet transport wake & contrail flows



Civil Aviation Alternate Fuel Contrail Optical 

Measurements Research (CAAFCOMR)
- Aircraft
- Generator/emitter, NRC Falcon 20 [100% CH, ACCESS II, CAAFER, 

CAAFCEB 92% SPK ], Mach Number 0.72-0.82

- measurement NRC CT-133 (sensor data: FSSP-100, CN7610, 

LiCor840, Picarro), Mach Number 0.56-0.62

- Racetrack flight patterns – trail, 0.5-25 km
- Short, 20th Aug 19 (sublimating), M0.72

- Long, 28th Aug 19 (M0.72), 12th Feb 20 (M0.82) (persistent)

- Fuels
- 100% ATJ SPK & Jet A1
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FA20 Contrail 

analyses:
- X-sections:
- Ice #/cc, TS, 

RHICE, RHW,
- RHICE & ice #/cc 

have an interplay 

(contrail is a 

continuous 

formation/growth/

sublimation 

process across the 

X-section)

- however, the 

depleting 

correlation with 

warm TS is 

evident, even 

though max TS

was just 1 K in 

this instance
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FA20 wake vortex 

filaments (25b back):

Air temperature in Jet transport wake & contrail flows
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FA20 wake vortex filaments (25b back) cont.:
• Using multiple sensors for confirmation

Air temperature in Jet transport wake & contrail flows
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CONCLUSIONS:

Air temperature effects in wake vortex & contrail 

behaviour:

- Is complex, subtle, important;

- WV modal capture by modelling & full contrail characteristics unlikely to be 

captured without fine definition of air temperature perturbation distributions 

& spatiotemporal trajectories:

- But TS is derived from TAT with strong PS, PT dependency, need 

directs measurement (at a very high rate, at least 600 Hz) for quasi-

independent assessment (‘quasi’ relating to the residual magnitude of 

convective heat transfer).

Air temperature in Jet transport wake & contrail flows


