

OVERVIEW

- Total Air Temperature (TAT) Sensor Basics
- History of Rosemount Aerospace Fuselage TAT Probes
- TAT Error Types
- Outside Air Temperature (OAT) Probes
- Engine TAT Probes
- Rosemount Aerospace Wind Tunnel Capabilities

WHAT IS TOTAL TEMPERATURE?

- Total Air Temp (TAT) is Max Temp Which Can be Obtained by 100% Conversion of the Kinetic Energy of Flight
 - Static Temp. + Heat Due to Compression of Air
- Sensors Slow Flow to Adequately Recover Most of Total Temp (Recovery Temp)
- Can Relate Total Temp (Tt) and Static Temp (Ts) Using Formula at Right

$$T_t = T_s \times (1 + \frac{\gamma - 1}{2} M^2)$$

WHAT IS TAT USED FOR?

- Total Temp is Used for a Variety of Aircraft and Engine Purposes Depending on Aircraft Needs
- TAT Needed to Calculate
 True Airspeed (TAS)

(TAS) = M (TAT)^{1/2}
$$\frac{\gamma R}{1 + (\gamma - 1) M^2}$$

- Engine Uses
 - Engine Control and Condition Monitoring
 - Determine Proper Fuel Flow
 - Scheduling of Inlet Guide Vanes
 - Control Fan Speeds
 - Selection of Engine Pressure Ratio (EPR)

FUSELAGE TAT FAMILY

101 STYLE TAT PROBE

- Started Rosemount Engineering Co in 1956
- Developed for Supersonic Military Aircraft
- Unheated
- Stainless Steel Housing
- Hollow Tube Element
 - Allows Flow Through and Around Element Windings
- Capabilities:
 - -70°C to +350°C
 - Up to Mach 3
 - 0 to 100,000 feet

OLD STYLE TAT PROBE (CONFIGURATION B)

- Developed in Late 1950's
- Electrically Heated
 - With 28 VDC or 115 VAC
- Beryllium Copper (BeCu) Housing
- Boundary Layer Bleed Features
- Hollow Tube Element
 - Similar to Model 101
- Unheated Version Available
 With Fast Response Element
- Capabilities:
 - -70°C to +350°C
 - Up to Mach 3
 - 0 to 100,000 feet

NEW STYLE TAT PROBE (CONFIGURATIONS A & C)

- Developed in Early 1960's
- Improved LWC vs Config B
- Electrically Heated
 - With 28 VDC or 115 VAC
- In Mid-1990's Introduced Enhanced Icing Version
 - Allow Particles to More Freely Pass Through
 - Reduced Icing Issues
- Ejector Version Available
 - Bleed Air Helps Reduce On Ground Errors
- Capabilities:
 - -70°C to +350°C
 - Up to Mach 3+

ollins Aerospace

• 0 to 100,000 feet

Ejector

MATERIAL ADDED TO IMPROVE HEAT

CONDUCTION TO

PASSAGE VALL

DIAMETER OF

EXIT SLICHTLY

HATERIAL REMOVED FROM

IN FT SCOOP

ENHANCED PERFORMANCE TAT (EPTAT®) PROBE

- Introduced in 2007
- Electrically Heated
 - 115 VAC only option
- Angled Housing 45° to Improve Inertial Separation
 - Improved Icing Performance
- Adjusted Internal Features to Optimize Airflow
 - Improved Accuracy
- Ejector Version Available
- Side-by-Side Solid Elements
 - Improved Reliability
 - Significantly Reduces Potential for Dual-Element Failures

EXAMPLE OF EXTREME ICE CRYSTAL ICING ISSUES

Tunnel TAT = -36°C

Ice Extruding Out Rear Exit Indicates Interior Ice Blockage

APPENDIX D TAT (XDTAT™) PROBE

- New 0105 TAT Family
- Developed for Enhanced Icing Capabilities
 - Specifically High Ice Crystal Contents (Appendix D)
- Improved Accuracy in Both Dry and Icing Environments
- BeCu Housing
- Side-by-Side Solid Elements
- Aspirated or Non-Aspirated
 - Image Shows Aspirated Model
- Quiet Operation During Flight
- Qualification Planned for 2021

TAT ERRORS

- Calibration
 - Uncertainty of Knowing Actual Temperature at a Certain Point
 - ±0.1°C With Precision Calibration Interchangeability (PCI) Resistors
- Recovery Error
 - Inability to Convert All of Kinetic Energy into Total Temperature
- Deicing Heater Error (DHE)
 - Housing Heat Reaches Sensing Element Producing Higher Reading
- Self-Heating Error (SHE)
 - Heat (I²R) Generated From Input Current and Sensor's Resistance
- Recovery Error, DHE and SHE Nominal Errors Can Be Compensated for in SmartProbe® or Similar Air Data Computer
- Random Portion (Part to Part Variation) of Above Errors Generally Used to Calculate Overall Dry TAT Accuracy

OTHER TAT ERRORS

- Insulation Resistance (IR)
 - Insulation Acts Like Resistor in Parallel With Sensing Element. Low IR
 Will Cause Sensing Element to Read Artificially Low.
 - Hermetically Sealed TAT Probes to Mitigate This Risk
- Time Response
 - Ability of the Sensor to Respond to Changes in Temperature or Velocities
 - Slower for EPTAT® & XDTAT™ Probes Compared to Other Styles
- Conduction Error
 - Heat Conducts From Baseplate Through Housing and Into Element
 - Generally Insignificant for Fuselage Mounted TAT's
- Icing
 - Original TAT's Designed For Use in Liquid Water Icing
 - Enhanced Icing Configuration C, EPTAT® and XDTAT™ Probes
 Designed to Improve Performance in Ice Crystals
 - XDTAT™ Probe Designed for Most Severe Ice Crystal Conditions

OUTSIDE AIR TEMPERATURE PROBE (OAT)

- Mainly Used for Helicopters, General Aviation, Slower Speeds
- Good Performance Up to ≈ Mach 0.4
- Unheated
- Chrome-Moly or Stainless Steel Housing
- Housing Design Allows for Very Good Accuracy Even in Severe Icing
 - Ice Builds But Element Passage Open
 - No Effect With Ice Crystals
- Solid Element
 - Slow Time Response
- Available in 100 or 500 ohms
- Capability: -70°C to +250°C

ENGINE TAT PROBES

- Engines Normally Require TAT at Engine Inlet (T2) and Compressor Inlet (T25)
- Styles Vary Depending on Engine Needs
 - Immersion Depth
 - Boundary Layer Dependent
 - Heated vs Unheated
 - 28V, 115V or Hot Air Heat
 - Accuracy and Icing Needs
 - Weight and Power Considerations

LARGE SCOOP ENGINE TAT

- Similar Construction to New Style TAT
- Inertial Separation to Protect Element From Moisture and Debris
- Boundary Layer Control Holes
- Electrical Heater Embedded in Housing
 - 115 VAC
- BeCu Housing
- Side-by-Side Solid Elements
 - Rugged Construction
- Able to Meet High Vibration Levels
 - Options With Vibration Isolator
- Often Supplied With Pitot Pressure
 - P2T2 Probe

SMALL SCOOP ENGINE TAT

- Used for Smaller Engines
 - Regional or Business Jets
- Similar Features as Larger TAT Probes, Miniaturized
 - Can Fit in Ø ¾" Hole
 - Worse Accuracy Than Large TAT's
- Electrical Heater Embedded in Housing
 - 28 VDC
- BeCu Housing
- Single or Dual Solid Element on Single Mandrel
- Available With Pitot Pressure
 - P2T2 Probe

AIRFOIL STYLE ENGINE TAT

- Sensor Shaped to Divert Flow Over Element
 - Pressure Delta Created
 - Protects Element From Debris, Water Droplets, Ice Crystals
- Unheated, Electrical Heated and Hot Air Heated
 - Unheated Have Comparable Accuracy to Large TAT's
 - Heated Have Worse Accuracy
- BeCu or SST Housing
- Single or Dual Solid Element on Single Mandrel

AXIAL FLOW STYLE ENGINE TAT

- Newest Engine TAT Style
 - Better Accuracy Than Airfoil
 - Reduced Ice Buildup
- Unheated
- Stainless Steel Housing
- Very Good Performance in Icing Conditions
- Dual Solid Element on Single Mandrel
- Supercritical Airfoil Used at Engine Inlet (T12) to Maximize Airspeed Range
- Ice Wedge Utilized at Compressor Inlet (T25) to Minimize Individual Ice Sizes

© 2018 Collins Aerospace, a United Technologies company. All rights reserved. Collins Aerospace Proprietary. This document contains no export controlled technical data.

ROSEMOUNT AEROSPACE WIND TUNNEL TESTING CAPABILITIES

- Advanced Icing Wind Tunnel (AIWT)
 - High speed Mach 0.9
 - Static temperature down to -60°C
 - Altitude to 47,000 feet
 - Appendix C & D icing capabilities
- Transonic Wind Tunnel (TWT)
 - High Speed Mach 1.6
 - Liquid water icing
 - Appendix C

- Low Speed Wind Tunnel (LST)
 - Rain test capabilities to 22 g/m³
- Vertical Wind Tunnel (VWT)
 - High Speed Mach 0.8
 - Altitude to 45,000 feet

