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• FAAM has a team of 
instrument scientists 
looking after a suite of 
“core” instruments

• Data from these 
instruments is available to 
anyone using the aircraft

Measuring air temperature at FAAM



Measuring air temperature at FAAM

• Indicated air temperature 
measured inside two 
Rosemount 102 housings

• Combined with pressure 
measurements and 
recovery factor to produce 
static air temperature



Non-de-iced housing is 
smaller, with smaller inlet

De-iced housing has optional 
heater, turned on manually in 
icing conditions

Measuring air temperature at FAAM
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Measuring air temperature: PRT sensors



• Original sensors, “looms”, were thin platinum wire wound round mica 
support

• Fast response, but complex due to dual time constant
• Looms are fragile and can drift / fail suddenly
• Out of production, expensive to get one made
• Commercial thin-film PRTs can be mounted in an old holder 
• Low-cost, robust and minimal calibration drift 
• BUT slower (~1s) time response than loom

Measuring air temperature: PRT sensors

In-flight plate vs loom temperature response



Measuring air temperature: thermistors

• Commercially available (GE NTC Type FP07 Fastip
Thermoprobes) fast response glass bead 
thermistors mounted instead of PRT in old holder 

• Two of type FP07DA103N, 10 kΩ at 25 ◦C, and two 
of type FP07DB154N, 150 kΩ at 25 ◦C
→ Focussing here on FP07DA103N 

• Initial tests indicate that response may be as fast as 
loom sensors, with minimal drift

• Thermistors currently susceptible to electronic 
noise

New circuit being designed



Calibrating FAAM’s thermistors

• Thermistors self-heat
→ needs to be handled carefully in calibration and processing

• Dissipation of heat depends on flow over sensing element
• Flow is small in the calibration lab, greater in-flight, how much?
• Need to correct for self-heating in calibration lab, and self-heating in-

flight, without knowing the difference between flows
• Also, self-heating is temperature dependent:

P = K (Tth-Tair )

Power input to thermistor = dissipation constant x self-heating



Calibrating thermistors in the lab

• Calibration happens in air, in chamber refreshed at 1 litre/minute
• Want to know how resistance relates to probe temperature (not air temperature) 
• Need to measure self-heating as part of the calibration, in order to infer probe temperature
• To do this, calibrate at two voltages

• Reducing voltage by 1/√2 reduces the self-heating by half
• Slight differences in resistance of thermistor measured for the two applied voltages at each calibration point 

allows us to calculate self-heating

Tair

Tth
Self-heating = Tth - Tair
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• Focussing on our two FP07DA103N thermistors, A1 and A2, each calibrated 4 times
• Both are the same type, but have different dissipation properties (glass thickness?)
• Self-heating and dissipation measurement is repeatable over 3 years

Calibrating thermistors in the lab
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• Focussing on our two FP07DA103N thermistors, A1 and A2, each calibrated 4 times
• Both are the same type, but have different dissipation properties (glass thickness?)
• Self-heating and dissipation measurement is repeatable over 3 years

Calibrating thermistors in the lab



Using thermistors in flight

• Now know how thermistor temperature relates to resistance  
• But how much self-heating is there in flight?
• Flow through housings will be greater in flight - no data (?) for how much

✓



• Thermistors flown on 82 flights with applied voltage switched every 5 s (5 V and 5/√2 V)

>100,000 measures of self-heating (along with knowing power input to thermistor)

>100,000 measures of dissipation constant

• Tricky to analyse with temperature changing, so filtering required 
• Now need to look for any dependencies of dissipation on measured quantities 

Using thermistors in flight

• Now know how thermistor temperature relates to resistance  
• But how much self-heating is there in flight?
• Flow through housings will be greater in flight - no data (?) for how much

✓



Example: does dissipation vary with air density? 

Thermistor self-heating in flight



Example: does dissipation vary with air density? 

Thermistor self-heating in flight



Thermistor self-heating in flight

• Sensor to sensor variation exists in flight
• Lines shown are for kflight= klab x 1.97



Thermistor self-heating in flight

• Sensor to sensor variation exists in flight
• Lines shown are for kflight= klab x 1.97



Measuring static air temperature: thermistors
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Measuring static air temperature: thermistors



What about when the sensor gets wet?

Uncorrected thermistor
Corrected thermistor
PRT

Uncorrected thermistor
Corrected thermistor
PRT

Correction doesn’t work when sensor is wet

→ Different dissipation properties

Out of cloud In cloud



…now we can verify that a sensor isn’t wetted

Uncorrected thermistor
Corrected thermistor
PRT

Uncorrected thermistor
Corrected thermistor
PRT

• Correction makes things worse, so this tells us sensor is wet

• So also tells us when sensor isn’t wet

• We now know when we can trust temperature measurements in cloud

• Could investigate further – correlation between LWC and dissipation?

Out of cloud In cloud



Summary

• New thermistor sensors provide a good alternative to original PRTs, flown on many flights 

• Self-heating means calibration and processing isn’t straightforward

→ by switching voltages, we can measure self-heating and dissipation

• Dissipation properties evident from voltage switching in-flight tells us if sensor is wetted

→ we can now know if a sensor is successfully measuring in-cloud air temperature

Hannah Price, FAAM Instrument Scientist

hannah.price@faam.ac.uk



Thermistor self-heating in flight

(In-flight, Mach, temperature, pressure and air density are all tied to altitude)



Measuring static air temperature
temperature of the air as if we weren’t there disturbing things

Time response ↔ spatial resolution 

Sensor needs low thermal mass – delicate! 
Sensor also shouldn’t get wet
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Thermistors – example flight data 2019

Magnitude of variations in thermistor 
temperature less than for loom. Peaks 
and troughs occur at the same time 
though.

• Is the thermistor sensor slower to 
respond to changes in temperature?

• Does the loom overshoot?

• Is the thermistor signal over-
damped by the sampling 
electronics?



Measuring static air temperature: de-icing



Measuring static air temperature: de-icing

!



Measuring static air temperature: de-icing

!

• Housings can clog up with ice

• De-iced housing has optional heater

• More changing the temperature of the 
thermometer!

• Can be corrected for, but sensor wetting 
still an issue in both housings
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