What is an aerosol?

An aerosol is a dispersion of condensed, solid or liquid particles in suspension in a gaz.

Example:

What is the typical size of aerosol particles ?

From a few nanometers: a few molecules condensed

To precisely 72.87 meters

According to the standard in Toulouse

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *

What is the typical size of aerosol particles ?

From a few nanometers: a few molecules condensed

To a few centimeters: hailstones

What means a distribution ?

The parameter of interest, F, for an aerosol can be

- the number concentration (cm⁻³)
- the extinction (km⁻¹)

.

• the mixing ratio (g kg⁻¹ or g m³)

..... any extensive property of a population of particles, with different sizes, mass, chemical composition,.....

A distribution, or spectrum, describes how that parameter is distributed over size, mass,

What means a distribution ?

x measures the particle property, size, mass,.....

F(x-,x+) is the parameter of interest, and x-, x+ are the smallest, largest x values

The spectrum is dF/dx

How to select x ?

As an example, F is the particle concentration: C

and x is the particle radius: r

c(r) = dC/dr is the particle size spectrum

What means a distribution ?

c(r)=dC/dr is the particle spectrum, How would you define it ?

> c(r) is the concentration of particles with a radius between r and r+dr

> > c(r) is the **concentration density** of particles at the radius r

 $(cm^{-3} \mu m^{-1})$

How to measure a distribution ?

c(r)=dC/dr is the particle spectrum, But any instrument has a limited size resolution

> One can only approach c(r) by measuring the concentration of particles in size classes, that have a finite width: $\Delta ri=ri_{max}-ri_{min}$

Ni (cm^{-3})

Size classes (µm)	Counts per class Ni
0.1-1	9000
1-10	9000
10-100	9000
100- 1000	9000

Size classes (µm)	Counts per class Ni
0.1-1	9000
1-10	9000
10-100	9000
100-1000	9000

∆ri	Ni
0.1-1	9000
1-10	9000
10-100	9000
100-600	5000
600-1000	4000

Size classes (µm)	Counts per class Ni	Ni/∆ri (µm⁻¹)
0.1-1	9000	10000
1-10	9000	1000
10-100	9000	100
100- 1000	9000	10

Size classes (µm)	Counts per class Ni	Log(Ni/∆ri)
0.1-1	9000	4
1-10	9000	3
10-100	9000	2
100- 1000	9000	1

Size classes (µm)	Counts per class Ni	Log(Ni/∆ri)
0.1-1	9000	4
1-10	9000	3
10-100	9000	2
100- 1000	9000	1

Size classes (µm)	Counts per class Ni	Ni/ ∆log(ri)
0.1-1	9000	9000
1-10	9000	9000
10-100	9000	9000
100- 1000	9000	9000

Better divide the number/class by the same unit as you use on the X axis

How to measure a distribution ?

Particle Integrator: measures an integral property of an ensemble of particles. Ex: phase function : $I(\theta)=\int i(\theta,r)c(r)dr$

Inverse $I(\theta)$ to get c(r)

Single particle counter: detects each particle as it crosses the sensitive section of the instrument, and measures its size. Cumulate counts until you have enough particles to build a statistically significant spectrum.

How to measure a distribution with a SPC ? Spatial resolution/statistical significance

The uncertainty due to randomness of counting decreases as: $N^{-1/2}$ An estimation based on 100 counts is within $\pm 10\%$ An estimation based on 1000 counts is within $\pm 3\%$

The aircraft moves while the counter is cumulating detected particles.

A measured spectrum is always a compromise between spatial resolution and statistical significance.

Microscale studies

Depth of field selection

*

Microscale studies

Microscale studies

The FSSP counts up to 100 000 particles per second, i.e. 100 m spatial resolution. 10 % are sized.

Processing at 100 Hz, i.e. 1 m spatial resolution, means about 100 particles available for calculation of LWC

At a higher sampling rate, finer spatial resolution, the estimation of LWC is noisy because of randomness of the counting process

Microscale studies

What is the maximum liquid water content measurable with a single particle counter in a cloud ?

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *

Measurements of Aerosol Particles **Microscale studies** Signal diode $At = 2 \ 10^{-7} \ s$ $N_i = n_i / (S v \Delta t)$ $q_c = 4/3 \pi \rho_w \sum N_i r_i^3 = 4/3 \pi \rho_w \sum n_i r_i^3 / (S v \Delta t)$ When $\Delta t < 0.1 \mu s$, a sample shorter than the droplet diameter The limit is $q_{cmax} = 1000 \text{ kg m}^{-3}$

Microscale studies

Counting particles is a random heterogeneous Poisson process Each cloud traverse is a single realization of that random process How is it possible to get a realistic estimation of the concentration (or LWC) from a single realization ? The estimation based on N counts, approaches the expected mean concentration over the sample, within $\pm N^{-1/2}$

Is it possible to get a realistic estimation with fewer particles ?

YES But it is not easy !

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *

Optimal estimation

Optimal estimation allows to retrieve information based on a few counts, provided previous counts and statistical properties of the process driving concentration fluctutations.

It provides the probability density function of the possible solutions

A non-linear optimal estimator is well suited for the detection of sharp changes, such as at the cloud edge.

Optimal estimation

Optimal estimation

ACAS EUFAR School * De Bilt Lo Lo April 2000 - 0. D. Drenguler

Optimal estimation

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier

Another trick !!!!!

Extensive/Intensive Parameters

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *

Impact of entrainment-mixing on cloud microphysics

In non-precipitating convective clouds, droplets are growing by water vapour diffusion, from cloud base to cloud top.

The liquid water content, however, is reduced each time drier air from the environment is entrained and mixed with the cloudy air.

Is that LWC reduction accounted for by a decrease of the droplet sizes or a decrease of the droplet concentration ?

Most of in situ observations show that the concentration decreases, while the mean diameter is almost not affected by mixing

Impact of entrainment-mixing on cloud microphysics

Most of in situ observations show that the concentration decreases, while the mean diameter is almost not affected by mixing

Impact of entrainment-mixing on cloud microphysics

Explanation I:

If the time scale for turbulent homogeneization τ_T is much **<u>shorter</u>** than the droplet response time to evaporation τ_D , mixing is homogeneous, and droplet sizes shall decrease.

If , the time scale for turbulent homogeneization τ_T is much **longer** than the droplet response time to evaporation some droplets are totally evaporated, but the remaining ones are unaffected, because they finally mix with pre-moistened entrained air. Mixing is heterogeneous

Impact of entrainment-mixing on cloud microphysics

Explanation II:

The droplet spatial distribution in regions affected by entrainmentmixing is heterogeneous, with pure cloudy air filaments, intertwinned with clear air filaments.

Pure cloudy air: $[N_a; \phi_{va}^3]$ and diluted air: $N_d << N_a$ and $\phi_{vd}^3 << \phi_{va}^3$ When cumulating counts over a heterogeneous section

 $N=0.5N_a + 0.5N_d \approx 0.5N_a$ and $\phi_v^3 = (0.5N_a\phi_{va}^3 + 0.5N_d\phi_{vd}^3)/N \approx \phi_{va}^3$ The spatial heterogeneity affects extensive parameters, while intensive parameters are only slightly reduced

Impact of entrainment-mixing on cloud microphysics

Explanation I:

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *

Impact of entrainment-mixing on cloud microphysics

Impact of entrainment-mixing on cloud microphysics

Spatial resolution/statistical significance

PHASE I: Observations

Locally, cloud drop spectra are narrow

When averaged over long distances, they approach a nice Gamma or Lognormal distribution shape

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *

Thank you for your attention !

ACAS EUFAR School * De Bilt 20-23 April 2008 * J. L. Brenguier *