European Facility For Airborne Research

European Facility For Airborne Research May 22, 2018, 09:45

Document

Description
Title Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere
Type Publication
Abstract:

The Department of Meteorology at Stockholm University operates the Esrange Rayleigh/Raman lidar at Esrange (68° N, 21° E) near the Swedish city of Kiruna. This paper describes the design and first measurements of the new pure rotational-Raman channel of the Esrange lidar. The Esrange lidar uses a pulsed Nd:YAG solid-state laser operating at 532 nm as light source with a repetition rate of 20 Hz and a pulse energy of 350 mJ. The minimum vertical resolution is 150 m and the integration time for one profile is 5000 shots. The newly implemented channel allows for measurements of atmospheric temperature at altitudes below 35 km and is currently optimized for temperature measurements between 180 and 200 K. This corresponds to conditions in the lower Arctic stratosphere during winter. In addition to the temperature measurements, the aerosol extinction coefficient and the aerosol backscatter coefficient at 532 nm can be measured independently. Our filter-based design minimizes the systematic error in the obtained temperature profile to less than 0.51 K. By combining rotational-Raman measurements (5–35 km height) and the integration technique (30–80 km height), the Esrange lidar is now capable of measuring atmospheric temperature profiles from the upper troposphere up to the mesosphere. With the improved setup, the system can be used to validate current lidar-based polar stratospheric cloud classification schemes. The new capability of the instrument measuring temperature and aerosol extinction furthermore enables studies of the thermal structure and variability of the upper troposphere/lower stratosphere. Although several lidars are operated at polar latitudes, there are few instruments that are capable of measuring temperature profiles in the troposphere, stratosphere, and mesosphere, as well as aerosols extinction in the troposphere and lower stratosphere with daylight capability.

Available from http://www.atmos-meas-tech.net/6/91/2013/
Author
GUMBEL Joerg
P. Achtert, M. Khaplanov, F. Khosrawi
Reference
Journal Atmospheric Measurement Techniques
Volume 6
Pages 91-98
Year 2013
Times cited 5
Institute country Sweden
Type of science
  • Aerosol chemistry and physics
  • Cloud physics
Field of science
  • Stratosphere
  • Troposphere
File details
Added Jan. 30, 2015, 00:00
Last update April 28, 2016, 14:43
Size 359.0 KB
File name Achtert_AMT_2013_20150130234544.pdf
Visibility Public
Links with specific subjects

Go to the document list

Back to top
EUFAR
EU

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 312609

Copyright © 2018 EUFAR All rights reserved.