European Facility For Airborne Research

European Facility For Airborne Research Feb. 24, 2018, 22:26

Document

Description
Title Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
Type Publication
Abstract:

Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection) are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI) spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa and other continents with geostationary satellite coverage.

Available from http://www.hydrol-earth-syst-sci.net/15/223/2011/
Author
ANDERSON Martha
CAMMALLERI Carmelo
KUSTAS William
PIMSTEIN Agustin
J. M. Norman, C. R. Hain, J. R. Mecikalski, L. Schultz, M. P. González-Dugo, G. d'Urso, F. Gao
Reference
Journal Hydrology and Earth System Sciences
Volume 15
Pages 223-239
Year 2011
Times cited 0
Institute country United States
Type of science
  • Biology and Ecology (includes animals and vegetation)
  • Geophysics and Glaciology
  • Hydrology (includes water quality, fresh water and inland water)
Field of science
  • Biosphere
File details
Added March 7, 2011, 00:00
Last update April 22, 2016, 14:38
Size 3.2 MB
File name None
Visibility Public
Links with specific subjects

Go to the document list

Back to top
EUFAR
EU

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 312609

Copyright © 2018 EUFAR All rights reserved.